
151

An additional factor under very heavy loads at present is the overflow
of paging traffic to the moving head disks which occurs occasionally
as we do not have the more intelligent fixed head storage manager
operating yet . When swapping moves to the disks, two things happen.
First, the time to move a page in or out increases by a factor of 4 or
5 and second, the disk channel is tied up more often causing
contention between swapping and other disk input/output activities.
This may cause particularly long load times for very large programs.
This latter problem should be remedied by software changes to allocate
fixed head space to active pages and to move dormant ones to moving
head storage.

From a system design point of view, the remaining response
problems are affected by two system resources; memory size and CPU
power. Adding more memory would allow more of the runnable jobs to be
resident at a given time, thereby giving more continuous attention to
more jobs. Increased memory would move the break point in the
response curve caused by swapping toward a higher load average.
Already though (based on the above comments), at a load average of 2-3
the response is degrading. Since we are running quite efficiently now
(15-202 overhead), allowing more jobs to be in.core to compete for CPU
power would not effectively solve the response problem. It would have
the beneficial effect of “linearizing ” the degradation at loads above
4.

A second approach would be to increase the inherent processor
speed so that jobs would get finished sooner and leave the runnable
state more quickly because they are actually completed rather than
having their aliquot timed out. This would reduce the load average
with the same number of users because jobs would be waiting for user
input more of the time. As noted in the report, the experience in up-
grading the IMSSS KA-10 to a KI-10 dropped the load average from
around 15 to about 5-10. Added CPU power would not change the
location of the swapping break on the response vs load average curve,
it reduces the load average on the existing curve. It also has the
effect of reducing the number of swapping cycles a job has to go
through to complete execution when swapping does set in.

In the long term both augmentations would likely be desirable.
There is an optimum balance between CPU power and system memory size.
That balance is reached for interactive jobs when the memory holds
enough runnable jobs that when the processor is distributed over all
of these jobs, just acceptable user response is achieved. Additional
jobs would cause swapping which incurs a more steeply rising response
penalty per added job than if more memory were available, but the
response would become unacceptable in either case.

On the basis of current data and since only one of these
resources could be upgraded within the present budget, we feel the CPU
augmentation is the better choice. It would alleviate the present
battleneck because it improves the user-perceived response time by
improving the actual running time of his job. In addition at lower
load averages, it would allow more complex programs to become
interactive because they would run faster.

152

For these reasons as the SUMEX-AIM system becomes progressively
more heavily loaded with the addition of new users and collaborators,
we feel the CPU will be the next most critical resource of the
facility. We are currently working on a preliminary plan (see page
51) proposing to allocate available funds within the council-approved
award levels to up-grade the present KI-10 CPU. We expect this plan
to be refined in the next few months at which time we will submit it
for AIM Executive Committee and NIH review.

153

APPENDIX D

PDP-11 SAIL Design Summary

SAILEX --- SAIL Experimental compiler

The Portability Problem

The number and availability of computers has expanded greatly in
recent years. Accompanying this expansion has been a proliferation of
programming languages and software systems. Usually, each computer has
its own assembly language, and supports one or more high-level
languages. The software is written in assembly language, and hence can
execute only on the host computer. The many common functions performed
by systems software are often obscured by implementations peculiar to
a given computer. Assemblers, compilers, text editors, and linkers
require separate manuals for each computer. Languages such as FORTRAN,
ALGOL and BASIC have restrictions, extensions, and usually many
undocumented idiosyncrasies. Operating systems have widely differing
capabilities, though the underlying computers may not be so diverse.
Programs often have dependencies on the available environment, or
employ peculiarities of a particular computer model.

Such computer-specific programming limits a program's
portability, i.e. its ability to execute on more than one computer.
Some programs are unlikely candidates for portability, e.g. a program
which communicates with a one-of-a-kind device. Many programs,
however, could be written so that only minimal changes, if any, would
be needed to allow execution on another computer. Since assembly
languages are designed for specific computers, portable programs must
be written in a higher level language, i.e. a language which does not
concern itself with the physical makeup of the computer. Machine-
independent languages focus attention on the problem to be solved,
rather than the implementation of the solution.

The M x N problem involves M languages which are to be
executable on any of N computers. Each language could have a compiler
for each machine, resulting in M * N compilers. Alternately, there
could be M compilers which translate the languages into a single
intermediate code, and N compilers which translate the intermediate
code into target code, for a total of M + N compilers. Further
reduction in the number of compilers depends on similarities in the
languages or target computers. In what follows we shall be concerned
with the compilation of a single language for many computers, a
reduction of the M x N problem to the 1 x N problem. A distinction
should be made between "language portability" and "program
portability. W By language portability we mean a language which can be
compiled into code for many computers. Program portability is the
ability of a particular program to be executed on many computers.

154

Language Portability

A number of new developments in computing will have a great
impact on language portability. The growing literature on programming
techniques is making programmers more aware of general techniques, and
more willing to build on the work of others, Computer networks will
lead to large-scale sharing of programs, and the desire to execute
programs on one computer which were developed on another. Experience
on the various computers available over a network should lead to
increased awareness of machine-dependent aspects of a program, and an
effort to write programs usable by other computers on the network.

Memory capacity, available peripherals, even instruction sets
sometimes vary little from computer to computer, Computer families
with differing options between models are becoming commonplace. A
single language could be compiled into code tailor-made for a
particular model, so that programs written in the language could be
independent of the target machine. Internal organizations are often
comparable, as evidenced by the common general register ---
base/displacement architecture. Increases in speed and memory help
alleviate inefficiencies caused by not using a language specifically
written for a computer.

Thus the feasibility of and motivation for language portability
seem well established. There is a need for easy compilation of
programs for different computers. Each compilation should fit the
program to the target machine, making as much use as possible of the
target instruction set. The compilation should not spend a great deal
of time determining the characteristics of the target machine.
Decisions concerning code-generation strategy should be made once,
then incorporated into the compiler. The development of compilers for
new machines should be an integral part of the compiler system, with
as much work as possible done automatically, A simple yet flexible
manner of specifying target machines should be available. The compiler
itself should be written in the language being implemented, so that it
can execute on computers for which it can generate code.

Program Portability

Program portability is more difficult to obtain than language
portability. A program written in a portable language can be compiled
into code for many computers, but execution of the code may produce
various results on the different computers. For example, such a
program could have dependencies on word size, numeric representation,
character representation, memory size, addressability, or the file
system. Mathematical routines implemented on computers with differing
numeric precision are difficult to port without rather elaborate
precautions. Programs which must interact with the operating system,
or otherwise VliberatelV themselves from the programming language, must
be given special attention to minimize such machine-dependence.

155

Portability should be considered in the initial design of a
program. A little inefficiency may be acceptable to make a program
portable. The resulting implementation is often more efficient, more
flexible, and more easily understood and maintained. When machine-
dependence is felt necessary, it should be isolated and well
documented as such. Many programs which may seem to be machine-
dependent can be made portable by judicious design. For example, text
editors often have many dependencies on the operating system and file
system. Yet the operating and file systems, and the editors, may have
very similar capabilities. Thus the dependencies are not inherent to
text editing, and an editor capable of running on all computers could
be designed with little loss in efficiency.

SAILEX --- A Machine-independent Compiling System
--------------------__________y_________---------

A machine-independent compiling system is being developed for a
subset of the language SAIL, the Stanford Artificial Intelligence
Language. SAIL is described in MEMO AIM-204 of the Stanford Artificial
Intelligence Laboratory, Stanford University. Changes made to SAIL for
use on the TENEX operating system are described in TENEX SAIL,
Technical Report No. 248 of IMSSS (Institute for Mathematical Studies
in the Social Sciences), Stanford University.

SAIL was originally designed for implementation on a PDP-10
computer, but much of the language is machine-independent. Some parts
considered too machine-dependent have been eliminated from SAILEX, and
some features have been added to enhance the power of SAIL (e.g.
double precision). SAIL is certainly not an ideal language for
portable programming, but has some characteristics which make it a
suitable experimental language for this purpose. A compiler already
exists for SAIL, so that the SAILEX system (which is written in SAIL)
can be compiled and executed without hand translation to some other
implemented language. The language is powerful enough to give a good
test of the feasibility of compiling for many computers. A rather
large number of users already exist, and there is great interest in
using SAIL on machines other that the PDP-10.

A means of specifying the semantics of a target machine has been
designed to meet the previously discussed criteria. This specification
includes:

1. External procedures to be available without declaration. For
example, double precision numerical routines may be available on
some machines.

2. Registers, and register classes. Examples of register classes
are integer registers, floating point registers, and index
registers,

156

3. Information needed for storage allocation. For example, the
number of addresses per integer.

4. Switches governing operation of the resulting compiler. For
example, can the symbol table be kept in memory; is readable
intermediate code desired.

5. Code generators. A language has been designed for specifying
code generation (the compiler outputs assembly language, not
binary code). This language gives the code generators the
appearance of the target code being specified. The full power of
SAIL can be used to write the code generators, but due to the
built-in capabilities of the generator language, such power will
probably never be necessary.

The compiler makes almost no assumptions about the target
machine. Extensive procedures for manipulating registers and their
contents are available, but are used only if invoked by a generator.
Much of the work of code generation has been found to be machine-
independent; only the specifics of a target machine need be
determined. The generators are responsible for requesting loading of
registers for instructions which require register addressing, most
local optimization, choice of instruction sequence, addressing format,
and allocation of storage. The compiler does all the bookkeeping tasks
such as remembering what is in the registers; loading, storing,
clearing and marking registers as requested; searching for the
“optimal” free register; remembering what operands have been used, for
later allocation; parameter passing schemes; symbol table maintenance;
and file manipulation.

The semantic specification of a target machine is used to create
a compiler specifically for that machine. Extensive conditional
compilation insures that those parts of the compiler not necessary for
a particular machine will not be present. Compilers have been created
for the PDP-11/45, PDP-11/40, PDP-10, IBM-SYSTEM/360, VARIAN-6201, and
NOVA. More computers are being considered, e.g. CDC family, INTERDATA,
BURROUGHS family, DATAPOINT, and SIGMA. The system will continually be
generalized as these machines are examined.

Specification of a new machine without radical departures from
all previously specified should be straightforward. The PDP-l1/40 was
specified in two hours, but the specification of the PDP-11/45, which
had already been specified, was used as a template. The VARIAN machine
took t.wo days, but this included learning the instruction set (the
code has not been carefully checked). In general, a poor
implementation can be produced very quickly, a compiler can be
generated, and the resulting code checked, This indicates how the code
can be improved, and the process starts again. A compiler can be
completely created from the semantic specification in a matter of
minutes (depending, of course, on the speed of the computer being
used). A manual describing how to specify a target machine, with
extensive examples from those already described, will be produced.
Familiarity with SAIL and the specification manual should be

157

sufficient to produce a compiler for a new target machine with little
trouble.

The code produced is not globally optimized, but otherwise
rather good. For example, SAILEX appears to produce 20-308 less code
for the PDP-10 than the currently available SAIL compiler. Comparison
with the code generated by the FORTRAN compiler on the PDP-11 and an
"equivalent" SAIL program indicates a reduction in size of about 30%.
Such measurements are not precise, and are given only to indicate that
SAILEX does not output inefficient code.

Care has been taken to insure that the SAIL compiler is
portable. By compiling the compiler, a SAIL compiler can be created
which runs on the target machine (a runtime system must be written for
the target machine). This has been done for the PDP-11/45, so that
the SAIL compiler is available on a PDP-ll/45 (also on a PDP-10). (The
SAILEX compiler, together with the runtime system and symbol table
space, takes about 20K words on the PDP-1 l/45 (the runtime system is a
library). About 2K more words are needed for string space.)

Future areas to be considered are:

1. Final testing of the PDP-l1/45 runtime system, and preparation
for its export to other sites.

2. Specification of more machines, and resulting generalization of
the code generation scheme.

3. Removal of any "hidden 1(machine dependencies in the compiler
system.

4. Implementation of more of SAIL (e.g. full macro facility,
records and references).

5. Machine independent global code optimization. The compiler has
been designed to facilitate code optimization within a variable
size window about the intermediate code. This is not yet done.

6. Design of a machine independent runtime system. The PDP-1 l/45
runtime system is written in PDP-11/45 assembly language for
execution under DOS, version 9. Much of the design could in fact
be abstracted from this setting. This abstraction might be
viewed as a blueprint from which runtime systems for other
machines could be developed, or it might be possible to actually
write most of the system in SAIL, and directly export it.

158

APPENDIX E

Subsystems and Documentation Directories

Nancy Smith
December 1974
(updated April 1975)

The sources of available documentation for these programs will
be abbreviated as follows:

TUG Tenex User's Guide (1975 edition)
DUH DEC Users Handbook
DAL DEC Assembly Language Handbook
DML DEC Mathematical Languages Handbook
HC a hard-copy manual for the language
OL on-line documentation which can be found by

@DIR <DOC>programname.* . The following extensions are
used on the <DOC> directory:

.MANUAL complete usually fairly long manual

.HELP or .HLP shorter summary, list of commands, etc.

.SUPPLEMENT on-line supplement to hard-copy dot

.UPDATE list of updates by date

.SAMPLE sample program or output

See <DOC>A-LIST-OF-ALL-AVAILABLE-DOCUMENTS.INFO for complete
details on these documents including where and how to order them.

Many of the major programs also have a
<BULLETINS>programname.BBD file where messages about new developments,
bugs, hints for using the program etc. are sent. These <BULLETINS>
files can be read by any of the mail reading programs (READMAIL, RD,
or BANANARD).

New programs or new versions of old programs will be put on
<NEWSYS> for a trial period. The file <NEWSYS>NEW-SYSTEMS,INFO which
is a message file will have a message about each program available.
The dot for these new programs will also be kept on the <NEWSYS>
directory. These new programs will not be included in the list of
programs given here.

The EXEC command @HELP prints a file with general help
information.

SUBSYS DESCRIPTION DOC

2SIDES makes files for multi-columns and/or 2-sided listing OL

159

ACCESS
ADDMSG
AID
AIFAIL
BAIL
BACKUP
BANANARD
BASIC
BCPL
BINCOM
BLISlO
BLISll
BLISS
BUDGET
BYE
CALENDAR
CAM
CCL
COPYM
CREF
CRSREF
DCHANGE
DCHECK
DDT
DED
DELOLD
DELVER
DIABLO
DIRNUM
DO
DONE
DROP
DTACOP
DUMPER
EE
ES
EXTR

F40

FAIL

FED
FILCHK
FILCOM
FILDMP
FILES
FORTRA
FREQ
FRKCOM
FTP
FUDGE2
GETDMP

assembly language (BBN version of FAIL) OL,HC
e also JSYS manual & <DOC>JSYS.INFO)
the final edit program of SOUP see <DOC>SOUP.MANUAL
checks SAIL programs for loader incompatibilities OL
complete file comparison package OL,DAL,TUG
dumps files in variety of formats OL
multiple to multiple copies, renames, protections
FORTRANlO(version 1A) (see also <DOC>FORTRAN.HELP) OL,HC
ranks words in text file according to frequency
compares an address space with address space of file TUG
ARPANET file transfers TUG
updates/manipulates files containing rel programs DAL,TUG
loads into core .dmp file from SU-AI (SAV only to

677777) type filename to * prompt
GRIPE sends comments or complaints about system to staff TUG
HELP prints out short general help file for SUMEX or help for

gives a list of subsys's currently available to GUESTS
appends a msg to a specified file
algebraic interpretive dialog conversational lang. HC
assembly lang. - early version of FAIL from SU-AI OL,HC
preliminary version of SAIL debugger (on <SAIL>) OL
short term file loss protection OL
msg reading program (many extra features)
conversational programming lang. (DEC version) OL,DMLykUG
compiler writing and systems programming lang. HC
binary comparison of files (now replaced by FILCOM) DAL
compiler for system implementation (DEC version) OL,HC,TUG
BLISS for the PDPll
compiler for system implementation (TENEXized) OL,HC(DEC)
budget management program (especially proposals) OL
@BYE same as @BREAK (LINKS)
calendar management and reminder system OL,TUG
the compare and merge program of SOUP see <DOC>SOUP.MANUAL
concise command language OL,DUH
reading/writing DECtapes OL,TUG
cross-reference assembly listing OL,DAL
TENEX cross-referencing program (outfile_infile(s))
character set conversion for "foreign" tapes OL
reads blocks of file into core & calls DDT to examine OL
debugger (single-stepping added at IMSSS) OL,TUG,DAL
text-editor (designed for TENEX) OL
deletes files by cutoff date of last access OL
deletes excess versions of files TUG
prints final copy of PUB-produced documents on DIABLO OL
translates directory name to number for DEC programs OL
creates or appends a line to a reminder file OL
deletes a line from a reminder file OL
similar to DELVER, deletes oldest and 2nd newest on *.*
DECtape to DECtape copy
reads/writes magnetic tapes
@EE <program> runs program on your directory as ephemeral
@ES <program> runs program on <SUBSYS> as ephemeral
"EXTRactor" processes MACRO/FAIL source files to

produce .FAI listing of labels defined
FORTRAN IV (see also <DOC>FORTRAN.HELP and

<DOC>LISP-FORTRAN-INTERFACE.HELP)
OL,TUG,DML

160

HOSTAT
IFAIL
ILISP
IMSSS
LD
LINK10
LINK11
LINKSTAT
LISP
LOADER
LOADGT
MACRO
MAILSTAT
MANTIS
MLAB
MULTI
MY-

ACCOUNTS
NETSTAT
NON

PCSAMP
PIP
PIP11
PNTMAK
POET
PPL
PROFIL
PUB
RD
READMAIL
RECORD

REDUCE
RUNFIL
RUNOFF
SAIL
SCAN
SEARCH

SEGSAV
SITBOL
SNDMSG
SNOBOL
SORT
SOS
SPELL
SRCCOM
SWITCH
SYSIN
TABLE
TALK
TAPCNV
TBASIC
TCTALK

programs
prints network site status information
assembly language (IMSSS version of FAIL)
UC Irvine LISP (extension of LISP 1.6)
direct link to IMSSS

TUG
OL,HC
OL

prints SYSTAT-like info including msg if MAIL WAITING
DEC loader OL,DAL,TUG
linker for PDPll DOS operating system
prints status of IMSSS link
INTERLISP-see also <DOC>LISP-FORTRAN-INTERFACE.INFO OL,HC
(from IMSSS)-see <DOC>LINKlO-LOADER-DIFFERENCES.HELP TUG
GT40 standard format loader
assembly lang.-see JSYS manual & <DOC>JSYS.INFO TUG,DAL
info on queued mail TUG
Fortran debugger
mathematical modeling and graphics package
multiple-fork supervisor--switches between forks
prints user's valid accountnames

OL

prints info on ARPANET status TUG
zero-compresses file, options to remove linenumbers,

pagemarks, etc.
measures the operation of other user programs TUG
DEC utilities program OL,DUH
transfers PDPll DOS DECtapes to/from TENEX files OL
converts underlines to suitable format for LPT: OL
text editor designed for TENEX use OL
an interactive extensible programming lang. TUG
gives freq of execution of SAIL statements OL,HC
document preparation lang. OL
mail reading program (BANANARD is better) TUG
mail reading program II 11 TUG
for pseudo-ttys, typescript of job, detaching OL
from running job
symbolic algebraic language OL
uses file instead of tty for input commands TUG
document-preparation language (DEC not BBN version) OL
ALGOL-like lang.-see also <DOC>LEAP.MANUAL OL,HC
scans multi-directories for a variety of file info OL
searches multi-text files for English words or SAIL OL
identifiers, can be used with TV editor
reads .shr & .low files to produce TENEX .sav OL
compiler version of SNOBOL OL
message sender OL,TUG
string-processing programming lang. OL,HC
stand alone COBOL column-oriented text file sorter OL,TUG
text editor OL
spelling checker/corrector for text files (not TENEX) OL
compares text files TUG
switches the format of a reminder file OL
executes LISP SYSOUT's OL
creates conversion tables for DCHANGE
used with LINK command to eliminate need for ;'s
reads card image file processed by MTACPY TUG
TENEXized version of DARTMOUTH BASIC OL
teleconferencing over ARPANET OL

TECO text editor (see TENEX TECO manual) OL,TUG
TMERGE merges specified text pages from files into new file OL
TODAY lists the contents of today's reminder file OL
TRITAP processes magtapes from XEROX, IMSSS, BBN OL
TTYTRB used to report terminal line problems TUG
TTYTST prints test patterns for diagnosing terminal TUG
TV text editor for TEC and DATAMEDIA displays OL
TVFIX restores bad TV files (see <DOC>TV.MANUAL)
TYMSTAT (for TYMNET lines only) gives measure of current

efficiency of TYMNET transmission
TYPBIN does an octal dump of a packed file TUG
TYPREL analyzes contents of .REL files TUG
WATCH continuous on-line monitoring of system activity TUG
WATCH.IMS IMSSS version of WATCH
WHAT lists the contents of a reminder file OL
WHO prints SYSTAT-like information
WHOIS looks up username & prints name/address info on user OL
XED text-editor (used with BANANARD) OL
XT reformats and prints text file OL
Z logs jobs off from inferior forks

162

<DOC> DIRECTORY LISTING -

The following is a listing of the <DOC> directory which contains
most of the on-line formal documentation about the system and
subsystem.

<DOC> 18-MAY-75 16:06:22

2SIDES.HELP;l
A-GENERAL.HELP;ll
A-GUIDE-TO-TENEX-USERS-GUIDE.INFO;l
A-LIST-OF-AVAILABLE-DOCUMENTATION,INFO;7
A-SURVEY-OF-THE-DEC-HANDBOOKS.INFO;g
ACCOUNT-NAME-USAGE.INFO;l
ALL-SUBSYS'S-AVAILABLE-AT-SUMEX,INFO;4
BACKUP.HELP;l
BAIL.HELP;2
BANANARD,MANUAL;2

.UPDATE;3
BASIC.HLP;l
BBN-PROGRAM-VERSION-NUMBER-STANDARDS.INFO;l
BLISlO.HLP;2
BLISS.HELP;l
BSYS.MANUAL;2
BUDGET.SAMPLE;2,1

.MANUAL;5,4,3
CALENDAR.MANUAL;l
CCL.HELP;II

.UPDATE;l
CHECKDSK.HELP;2
CHESS.HELP;l
CLEAN.HELP;l
COPYM.HELP;2
CREF.HLP;l

.UFDATE;l
DCHANG.HLP;l
DCHANGE.MANUAL;l
DCHECK.HELP;l
DDT.SUPPLEMENT;l
DEC-HANDBOOK-GLOSSARY-UPDATE.INFO;l
DEC/TENEX-COMMAND-EQUIVALENTS.INFO;l
DED.MANUAL;l
DELOLD.HELP;l
DESCRIPTION-OF-SUMEX-AIM-PROJECTS.INFO;3
DIABLO.HELP;3
DIRNUM.HELP;l
DO .HELP;4
DUMP.INFO;l
EDIT.INFO;l
EDITOR-PROGRAM-INTERFACE.INFO;l
FAIL.MANUAL;l

.HELP;4

163

FILcHIc.HELP;t
PILco?¶.HLP;4
FIL.DHP.HELP;2
FILEX.UPDATE;l

.DOC;l
FORDDT.DOC;l

.HLP;l
FORTRA.HLP;l
FORTRAN.HELP;2
HOW-TO-UPDATE-DOC.INFO;j
IDDT.HELP;l
ILISP.MANUAL;l
INTERROGATE.HELP;4
INTRO-TO-SUMEX-AIM-TENEX,INFO;4
LEAP.MANUAL;l
LINKlO.HLP;l

.DCC;l
LINKIO-LOADER-DIFFERENCES.HELP;l
LISP.HELP;j

.UPDATE;l
LISP-FORTRAN-INTERFACE.HELP;2
LIST.HELP;j
MACRO.HLP;l

.DOC;l
MINI-DUMP.LISTING;l
MLAB.HLP;2
NAIVE.PUB;l
NSOS.SUPPLEMENT;l

.MANUAL;l

.INTRO;l
OVERVIEW-OF-COMPUTER-SYSTEM.INFO;l
PIP.HLP;l

.SUPPLEMENT;l
*UPDATE;1

PIP1 l.HELP;l
PNTMAK.HELP;l
POET.HELP;l

.MANUAL;l
PROFIL.UPDATE;2
PROJECTS-AND-ASSOCIATED-USERS.INFO;8
PUB.MANUAL;2

.HELP;4

.UPDATE;9
PUB-MANUAL.PUB;lO
RECORD.MANUAL;l
REDUCE.MANUAL;l
RUNOFF.MANUAL;2
SAIL.HELP;l

.SUPPLEMENT;2

.UPDATE;j

.TENEX-SUPPLEMENT;1

.BEGIN-MANUAL;1
SAMPLE.PUB;l
SCAN.HELP;l
SFdRCH.MANUAL;j

.INF0;3

164

SEGSAV.HELP;l
SETTING-UP-NEW-USER-DIRECTCRIES.INFO;l
SITBOL.HELP; 1
SNDMSG.HELP;6
SNOBOL.MANUAL;l
SORT.HLP;l
SOS.UPDATE;6

.HELP;4

.MANUAL;l
SOUP.HLP;l

.MANUAL;l
SPELL.MANUAL;g
SUMEX-JSYS'S.INFO;l
SYSIN.HELP;l
SYSTEM-SCHEDULE.INFO;j
TBASIC,HELP;2

.SAMPLE;l

.MANUAL;4
TCTALK.DOC; 1
TECO.SAMPLE;l

. COMMANDS; 1

.HELP;l

.TEXTl;l

.TEXT2;1

.SUMMARY;l
TELNET.INFO;l
TENEX-EXEC-MANUAL-UPDATE,INFO;5
TERMINAL-LINKING.INFO;l
TMERGE.HELP;j
TRITAP.HELP;l
TV .UF'DATE;8

.MANUAL;6
TV-STRINGS.PMAP;l
TYMNET-INSTRUCTIONS.INFO;l
USER-NAME-ADDRESS-PHONE,INFO;29
WHOIS.HELP;l
XED.HLP;l

.MANUAL;l
XT .HELP;l

142 FILES, 1332 PAGES

165

<BULLETINS> DIRECTORY LISTING -

The following is a listing of the <BULLETINS> directory which is
a repository of informal or transient information about the system,
subsystems, current events, and items of interest.

<BULLETINS> 18-MAY-75 16:06:42

12-MAR-75.SYSLTR;l
ARPANET.BBD;l
ASCII.BBD;l
BASIC.BBD;l
BULLETINS.BBD;l
CALENDAR.BBD;4,3,1
COMPATIBILITY.BBD;l
CONSTANTS(PHYSICAL-OR-CHEMICAL).BBD;l
DIURNAL-LOADING-WEEKDAYS.MAR;l

.3/31/75;1

.2/17/75;1

.2/24/75;1

.3/3/75;1

.3/10/75;1

.3/17/75;1

.3/24/75;1

.APR;l

.FEB;l
DO .BBD;l
EDIT.BBD;l
EMPLOYMENT-WANTED,BBD;l
FILES.BBD;l
FORTRAN.BBD;l
GOOD-LISP-USAGE.BBD;2
GOOD-SYSTEM-USAGE,BBD;l
GUEST-LIST,BBD;2
IN-WATS.BBD;l
KWIC.BBD;l
LIBRARY-SAIL.BBD;l
LINKlO.BBD;l
LINKING.BBD;l
LISP.BBD;2
LIST.BBD;l
LOGIN-CMD.BBD;l
LOGIN-MESSAGES.BBD;2
MACRO.BBD;l
MEETINGS.BBD;l
MLAB.BBD;l
NEW-EXEC.INFO;l
OLD-SYSTEM-MESSAGES.BBD; 1
JDPll-GT40,BBD;l
"OSITIONS-AVAILABLE.BBD;l
PROTECTION.BBD;l
;;ECORD.BBD;l

166

SAIL.BBD; 1
. ;I

SEARCH.BBD;l
SNDMSG-READMAIL,BBD;l
SORT.BBD;l
SOS.BBD; 1
SPELL.BBD;l
SYSTEM-MESSAGES.BBD;l
TECO.BBD;l
TENEX.BBD;l
TESTIMONIALS.BBD;l
TV .BBD;l
TV-STRINGS.PMAP;l
TYMNET.BBD;l

60 FILES, 149 PAGES

APPENDIX F

Networking and Collaborative Research - DENDRAL Project

The following is a preprint of a paper to be presented at the
170th meeting of the American Chemical Society in Chicago during
August 1975 - the symposium title is "Computer Networking in
Chemistry". This paper will appear in the proceedings and reflects
well the orientation and activities of the SUMEX-AIM resource and its
collaborating projects (DENDRAL in this case>.

NETWORKING AND A COLLABORATIVE RESEARCH COMMUNITY: A
CASE STUDY USING THE DENDRAL PROGRAMS.

Raymond E. Carhart*, Suzanne M. Johnson, Dennis H. Smith, Bruce G.
Buchanan, R. Geoffrey Dromey, and Joshua Lederberg.

Departments of *Computer Science, Genetics, and Chemistry, Stanford
University, Stanford, California, 94305.

Computer Science is one of the newest, but also one of the least
"cumulative" of the sciences, Gordon (I) has recently pointed out the
upsetting disparity between the number of potentially sharable
programs in existence and the number which are easily accessible to a
given researcher. Although some mechanisms exist for the systematic
exchange of program resources, for example the World List of
Crystallographic Computer Programs (21, a great deal of programming
effort is duplicated among different research groups with common
interests. The reasons for this are understandable: these groups are
separated by geography, by incompatibilities in computer facilities
and by a lack of a means to keep abreast of a a rapidly changing
field.

The emergence of more economical technologies for data
communications provides, in principle, a method for lowering these
geographical and operational barriers; for creating, through computer
networking, remote sites at which functionally specialized
capabilities are concentrated. The SUMEX-AIM (Stanford University
Medical Experimental computer - Artificial Intelligence in Medicine)
project is an experiment in reducing this principle to practice, in
the specific area of artificial intelligence research applied to
health sciences.

The SUMEX-AIM computer facility (3) is a National Shared
Computing Resource being developed and operated by Stanford
University, in partnership with and with financial support from the
Biotechnology Resources Branch of the the Division of Research

168

Resources, National Institutes of Health, It is national in scope in
that a major portion of its computing capacity is being made available
to authorized research groups throughout the country by means of
communications networks.

Aside from demonstrating, on managerial, administrative and
technical levels, that such a national computing resource is a viable
concept, the primary objective of SUMEX-AIM is the building of a
collaborative research community. The aim is to encourage individual
participants not only to investigate applications of artificial
intelligence in health science, but also to share their programs and
discuss their ideas with other researchers. This places a
responsibility upon SUMEX-AIM to develop effective means of
communication among community members and among the programs they
write. It also places responsibility upon those members to design and
document programs that readily can be used and understood by others,

Another aspect of the SUMEX facility is providing service to
individuals whose interest is in using, rather than developing, the
available computer programs. Although this is not a primary
consideration, it is an essential part of the growth of these
programs. Most of the SUMEX-AIM projects have formed, or are forming,
their own user communities which provide valuable “real world”
experience, Figure 1 depicts the typical interaction of such a
project with its user community, and with other projects. The
participation by users in program development is not just restricted
to suggestions, but can also include software created by computer-
oriented users to satisfy special needs. In some projects, methods
are being considered to further promote this kind of participation.

The purposes of this paper are threefold: first, to indicate the
range of research projects currently active at SUMEX; second, to
describe in detail one of these projects, DENDRAL, which is of
particular interest to chemists; and third, to discuss some problems
and possible solutions related to networking and community-building.

I. Research Activities at SUMEX-AIM

The community of participants in SUMEX-AIM can be divided
geographically into local (i. e. , Stanford-based) projects and remote
pro jet ts , and below is given a brief description of the major
representatives of each. Communication with the remote projects is
accomplished through one or both of the communications networks shown
in Figure 2. In most cases, connection with SUMEX-AIM from these
remote sites involves only a local telephone call to the nearest
network ‘“node” .

The SUMEX-AIM system is itself undergoing constant improvement
which deserves to be called research, and thus a third section is
included here to represent system developments.

169

Remote projects

The Rutgers project. Originating from Rutgers University are
several research efforts designed to introduce advanced methods in
computer science - particularly in artificial intelligence and
interactive data base systems - into specific areas of biomedical
research. One such effort involves the development of computer-based
consultation systems for diseases of the eye, specifically the
establishment of a national network of collaborators for diagnosis and
recommendations for treatment of glaucoma by computer. Anot her
pro jet t concerns the BELIEVER program, which represents a theory of
how people arrive at an interpretation of the social actions of
others. SUMEX-AIM provides an excellent medium for collaboration in
the development and testing of this theory, The Rutgers project
includes, in addition, several fundamental studies in artificial
intelligence and system design, which provide much of the support
needed for the development of such complex systems.

The DIALOG project. The DIAgnostic LOGIC project, based at the
University of Pittsburgh, is a large scale, computerized medical
diagnostic system that makes use of the methods and structures of
artificial intelligence. Unlike most other computer diagnostic
programs, which are oriented to differential diagnosis in a rather
limited area, the DIALOG system has been designed to deal with the
general problem of diagnosis in internal medicine and currently
accesses a medical data base which encompasses approximately fifty
percent of the major diseases in internal medicine.

The MISL Project. The Medical Information Systems Laboratory at
the University of Illinois (Chicago Circle campus) has been
established to explore inferential relationships between analytic data
and the natural history of selected eye diseases, both in treated and
untreated forms. This project will utilize the SUMEX-AIM resource to
build a data base which could then be used as a test bed for the
development of clinical decision support algorithms,

Distributed Data-Base System for Chronic Diseases. This
project, based at the University of Hawaii, seeks to use the SUMEX-AIM
facility to establish a resource sharing project for the development
of computer systems for consultation and research, and to make these
systems available to clinical facilities from a set of distributed
data bases. The radio and satellite links which compose the
communication network known as the ALOHANET, in conjunction with the
ARPANET, will make these programs available to other Hawaiian islands
and to remote areas of the Pacific basin. This project could well have
a significantly beneficial effect on the quality of health care
delivery in these locations.

Modeling of Higher Mental Functions. A project at the
University of California at Los angeles is using the SUMEX-AIM
facility to construct, test, and validate an improved version of the
computer simulation of paranoid processes which has been developed.
These simulations have clinical implications for the understanding,
treatment, and prevention of paranoid disorders. The current
interactive version (PARRY) has been running on SUMEX-AIM and has

170

provided a basis for improvement of the future version’s language
recognition capability.

Local Projects

The Protein Crystallography Project. The Protein
Crystallography project involves scientists at two different
universities (Stanford and the University of California at San Diego),
pooling their respective talents in protein crystallography and
computer science, and using the SUMEX-AIM facility as the central
repository for programs, data and other information of common
interest e The general objective of the project is to apply problem
solving techniques, which have emerged from artificial intelligence
research, to the well known “phase problem” of x-ray crystallography,
in order to determine the three-dimensional structures of proteins.
The work is intended to be of practical as well as theoretical value
to both computer science (particularly artificial intelligence
research) and protein crystallography.

The FrYCIN project a MYCIN is an evolving computer program that
has been developed to assist physician nonspecialists with the
selection of therapy for patients with bacterial infections, The
project has involved both physicians, with expertise in the clinical
pharmacology of bacterial infections, and computer scientists, with
interests in art.i ficial intelligence and medical computing. The MYCIN
program attempts to model the decision processes of the medical
experts. It COIlSiStS of three closely integrated components: the
Consultation System asks questions, makes conclusions, and gives
advice ; the Explanation System answers questions from the user to
justify the program’s advice and explain its methods; and the Rule-
Acquisition System permits the user to teach the system new decision
rules s or to alter pre-existing rules that are judged to be inadequate
or incorrect II

The DENDRAL pro jet t . This project, being of particular chemical
interest T is described in detail in Section II. Through the SUMEX-AIM
facility DENDRAL has gained a growing community of production-level
users whose experience with the programs is a valuable guide to
further development. Although technically users, some members of this
community might better be described as collaborators because they have
provided SUHEX-RIM with various special-purpose programs which are of
interest to other chemists and which extend the usefulness of the
DENDRAL programs.

SUMEX-AIM System Development

Current research activities at SUMEX-AIM are developing along
several 1 ines. On a system development level there are ongoing
projects designed to make the system more user oriented. Currently,
the system can be expected to provide help to the user who is confused
about what is expected in response to a certain prompt. A “?I’ typed by
the user, will, in most oases, provide a list of possible responses

171

from which to choose. Also available in response to typing "HELP" to
the monitor is a general help description containing pointers to files
likely to be of interest to a new user.

In an effort to facilitate communication between collaborators,
a program called CONFER has been developed to provide an orderly
method for multiple participant teletype "conference calls".
Basically, the program acts as a character processor for all the
terminals linked in the conference, accepting input from only one at a
time, and passing it out to the remaining terminals. In this way, the
conference, in effect, has a "moderator " terminal, thus allowing for a
more orderly transfer of ideas and information.

SUMEX-AIM is also aware of the necessity of making its
facilities available for trial use by potential users and
collaborators. To this end, a GUEST mechanism has been established
for persons who wish to have brief, trial access to certain programs
they feel may be of value to them, and about which they would like to
obtain more knowledge. This provides a convenient mechanism whereby
persons, who have been given an appropriate phone number and LOGIN
procedure, can dial up SUMEX-AIM and receive actual experience using a
program they may only have heard about.

Another area of system development currently being explored at
SUMEX-AIM is that of creating a comprehensive "bulletin board"
facility where users can file "bulletinsl', that is, messages of
interest to the SUMEX-AIM community. The facility will also alert
users to new bulletins which are likely to be of interest to them, as
determined by individual user-interest profile.

II. DENDRAL - CHEMICAL APPLICATIONS OF INTERACTIVE COMPUTING IN
A NETWORK ENVIRONMENT

The major research interest of the DENDRAL Project at Stanford
University is application of artificial intelligence techniques for
chemical inference, focusing in particular on molecular structure
elucidation. Portions of our research are in the area of combined gas
chromatography/high resolution mass spectrometry and include
instrumentation and data acquisition hardware and software
development. This area is beyond the scope of this report; we focus
instead on the concurrent development of programs to assist chemists
in various phases of structure elucidation beyond the point of initial
data collection. SUMEX-AIM provides the computer support for
development and application of these programs.

Another aspect of our research is our commitment to share
developments among a wider community. We feel that several of our
programs are advanced enough to be useful to chemists engaged in
related work in mass spectrometry and structure elucidation in
general. These programs are written primarily in the programming
language INTERLISP, and thus are not easily exportable (exceptions are

172

indicated subsequently). SUMEX-AIM provides a mechanism for allowing
others access to the programs without the requirement for any special
programming or computer system expertise. The availability of the
SUMEX facility over nationwide networks allows remote users to access
the programs, in many instances via a local telephone call.

Much of the following discussion is preliminary because our
programs have only recently been released for outside use. Some
announcement of their availability has been made, and other
announcements will occur in the near future, through talks,
publications in press, demonstrations and informal discussions.
Althou_@ most of our experience has been with local users, they have
been good models of remote users in that their previous exposure to
the actual programs and computer systems is minimal. Their experience
has been extremely useful in heiping us to smooth out clumsy
interactions with programs and to locate and fix program bugs. Such
polishing is important for programs which may be utilized by users
from widely differing backgrounds with respect to computers, networks
and time sharing systems. We are in the processes of building a
community of remote users. We actively encourage such use for two
reasons: 1) we f’eeL the programs are capable of assisting others in
solvinq certain mol.ecular structure problems, and 2) such experience
with outside users will be a tremendous assistance in increasing the
power of our programs as the programs are forced to confront new real-
world problems,

The remainder of this section outlines the programs which are
available via SUMEX, the utilization of these programs in helping to
solve strucl;ure elucidation problems and the limitations we see to
their use. We discuss current applications of the programs to our
research and the research of other users to illustrate better the
variety of potential applications and to stimulate an interchange of
ideas, Where appropriate, we point out current difficulties with the
use both c;f our programs and of SUMEX. New applications and wider use
will certai.nly change the nature of these problems; we strive to solve
current problems, but new ones will always arise to take their place.

W’e have several programs which we employ in dealing with various
aspects of problems i.nvolving unknown structures. Some of these
programs are exportable, while the remainder are available at SUMEX.
The ava i.1 abi 1. ICY of each program is discussed below.

Cur iritial emphasis in studying applications of artificial
inte! Ligence for chemical inference was in the area of mass
spectrometryc 4-6). This emphasis remains because many of our problems
require rna3.s spectrometry as the analytical tool of choice in
providing structural information on small quantities of sample. More
recently, we have been developing a program (CONGEN, below) directed
at more general aspects of structure elucidation. This has extended
the S”“V of problems for which we can provide computer assistance. L \-\ !. I

SIC wi ‘I. 1 bep::i rl , however, with discussion of the mass spectrometry

173

programs. The examples used in the discussion are characteristic of
our current research problems, although we have focused on relatively
simple problems to keep the presentation brief. We trace, in what
might be chronological terms, the application of the programs to
various phases of a structure problem. In this way we hope to
illustrate the place of each program in the analysis. We begin by
discussing preprocessing of mass spectral data (CLEANUP and MOLION).
Subsequent analysis of such data in terms of structure is then covered
(PLANNER). The use of CONGEN is discussed for problems which cannot
be handled by the previous programs. Finally, we discuss efforts to
discover, with the use of the computer, systematics in the behavior of
known substances in the mass spectrometer as a means of extending the
knowledge of the system for applications in new areas (INTSUM and
RULEGEN > .

Programs for Molecular Structure Problems

The first three programs, CLEANUP, the library-search program
and MOLION are in a sense utility programs, but all three play a
critical role in processing mass spectral data. Subsequent
applications of programs (e.g., PLANNER) for more detailed spectral
analysis in terms of structure depend on the successful treatment of
the data by CLEANUP and MOLION, while the library search program
filters out common spectra which need not undergo a full analysis. The
examples used are drawn from our collaboration with persons in the
Genetics Research Center at Stanford Hospital. The experimental data
which are collected are the results of combined gas
chromatographic/low resolution mass spectral (GC/LRMS) analysis of
organic components (chemically fractionated and derivatized where
necessary) of body fluids, e.g. blood, urine. A typical experiment
consists of 500-600 individual mass spectra for each fraction, taken
sequentially over time as the various components, largely separated
from one another, elute from the gas chromatograph and pass into the
mass spectrometer. Each mass spectrum consists of the mass analyzed
fragment ions of the component(s) in the mass spectrometer at the time
the spectrum was taken, Such spectra are related, indirectly, to the
molecular structure of the component(s).

CLEANUP(7). The individual mass spectra obtained from
fractionated GC/LRMS analysis are quite often poor representations of
corresponding spectra taken from pure compounds. They can be
contaminated by the presence of additional peaks and/or distortions of
the intensities of existing peaks in the spectrum. Fragment ions from
either the liquid phase of the GC column or from components
incompletely separated by the gas chromatograph are are responsible
for the contamination. We have developed a program, referred to here
as CLEANUP, which examines all mass spectra in a GC/LRMS run, selects
those spectra which contain ions other than background impurities, and
remove contributions from background and overlapping components. A
snectrum results which compares favorably with the spectrum of a pure
component. Biller and Biemann (8) have developed a similar but less
;owerful program.

?74

For example, the CLEANUP program detected components at points
marked with a vertical bar in the (partial) plot of total ion current
vs. scan number (time>, Figure 3. Note that overlapping components
were detected under the envelopes of the CC peaks in the region of
scans 485-488, 525-529 and 539-552. We focus our attention on the
spectrum recorded at scan 492, The raw data, prior to cleanup, are
presented in Figure 4 (top>. The spectrum resulting from CLEANUP is
presented in Figure 4 (bottom). Note that the large ions (e.g., m/e
307, 221 and 315) from background impurities are removed, and that the
intensity ratios of peaks at lower masses (e.g., 51 and 77) have been
adjusted to reflect their true intensities in the spectrum,

The CLEANUP program is capable of detection of quite low-level
components in complex mixtures as indicated by some of the areas of
the total ion current plot t. ‘Figure 3) where components were detected.
It is completely general because nothing in the program code is
sensitive to the types of compounds analyzed or the characteristics of
possible impurities associated with the compounds or from the CC
column, Its major ‘limitation is that mass spectra must be taken
repetitively during the course of a GC/MS run. Its performance is
enhanced when such spec’ira are measured closely in time.

The progra?a is offered via SUMEX as an adjunct to use of our
other programa; it is not offered as a routine service. Because the
program is written In FORTRAN, we routinely use it on our data
acquisition computer system so as not to burden SUMEX with tasks
better done elsewhere s Similarly, we would assist other frequent
users to mount the program on their own systems.

L i k? ,. L” a 1 ‘y Sea:‘<:?; s With a set of “clean” mass spectra available,
the next nrotilerr, is identification of the various components. Over
the course oJ” se~rai years, libraries of mass spectral data have been
assembisdj9j j 7,’ :9& r2 3 2 libraries can be very useful in weeding out from
a group of spectra those which represent known compounds(l0). Clearly,
one should spend time on solving the structures of unknown compounds,
not on r7ediscovaring old ones. The CLEANUP program provides mass
spectra which are of sufficient quality to expect that known compounds
would be :-dentified easily from such libraries.

The sp~tra detected by CLEANUP in the region of scans 480 to
580 (Figure 3) were matched against the library of biomedically
relevant spectra compiled by S. Harkey (National Institutes of Health)
and GUT’ extensionc-s to that library (we wish to thank S. Grotch, Jet
Propulsion Laboratory, Pasadena, Ca. for providing some of the library
matchings 1 D Excellent matches with the library were obtained for
scans 452, 49ijy 509, 519, 529 and 548. The components are indole
acetic acLd nlethyl ester, di-n-butylphthalate, oaf feine, salicyluric
acid methyl ester, methoxyhippuric acid methyl ester and n-C24
hydrocarbon ~~esgectively (structures given in Figures 3 and 4).
Spectra scans at 485, 487, 525, 530, 536, 539, 554 and 576 did not
match well. ~12:: any spectrum in the library and thus must be examined
further for structural inf’ormation m The necessity for preprocessing
the data using CLEANUP prior to library matching is illustrated from
indole acetic acid methyl ester (scan 492). The “clean” spectrum

175

(Figure 4, bottom) was matched to the library spectrum of this
compound much better than to that of any other compound, The raw
spectrum (Figure 4, top), when compared to the library resulted in
eleven other compounds which matched more closely than the correct
one.

This brief example illustrates the obvious value and limitations
of library searching. The most interesting compounds for subsequent
analysis are those which are unknown. The fractions of urine extracts
are replete with unidentified compounds because of the inadequacy of
current library compilations. As new compounds are identified they
are, of course, added to the library,so that future analyses need not
reinvestigate the same material.

We currently perform library searching on our data acquisition
and reduction computer systems. We can, if necessary, offer limited
library search facilities via SUMEX. However, because commercial
facilities are available (e.g., over the GE network), routine library
search service is not available on SUMEX.

MOLION(11). At this stage we are left with a collection of mass
spectra of unknown compounds. The library search results may have
provided some clues as to the type of compound present, e.g., compound
class. Structure elucidation now begins in earnest. The key elements
in problems of structure elucidation are the molecular weight and
empirical formula of a compound. Without these essential data, the
structural possibilities are usually too immense to proceed further,
Mass spectrometry is frequently used to determine molecular weights
and formulae, but there is no guarantee that the mass spectrum of a
compound displays an ion corresponding to the intact molecule. For
example, many of the derivatives of the amino acid fractions of urine
display no molecular ions, When we are given only the mass spectrum
(and for GC/MS analysis a mass spectrum may be all that is available)
we must somehow predict likely molecular ion candidates. The program
MOLION performs this task, Given a mass spectrum, it predicts and
ranks likely molecular ion candidates independent of the presence or
absence of an ion in the spectrum corresponding to the intact
molecule. The published manuscript(ll) provides many examples of the
performance of the program.

The mass spectrum of an example, unknown X, (which we will
pursue in more detail below) is given in Figure 5. The results
obtained from MOLION are summarized in Table I. The observed ion at
m/e 263 is ranked as the most likely candidate.

